Chapters O, 1, 2. Variables and Data Types

import numpy as np

9.11e-31 # mass of electron
299792458 # speed of light

me
C

u 0.1 % C # particle velocity
gamma = 1 / np.sqrt(1-(u/c)*xx2) # gamma factor

KE = (gamma-1) * me % Cx%2 # relativistic kinetic energy

Python for Physicists

Python For Physicists

Chapters 0-2: Introduction, Variables and Data Types

Intro to Python

 Python is a widely used programming language that’s popular in science, data analysis,
and everyday problem-solving because 1t’s desighed to be readable and easy to learn.

* |[n Python, you can use it like a calculator to do math, work with text, or organize data
Into lists and tables.

* In Python, every piece of data comes with built-in tools for working with it (this is
true for numbers, characters, etc), so you can quickly get things done without
starting from scratch. For the experts: everything in Python is an object with pre-
defined attributes and methods.

 As you learn Python, you’ll see how a few simple building blocks can be combined to
model real-world problems, run experiments, and solve practical tasks.

Your First Program

* The following program displays a message to the screen. The output is shown to the right

print(“hello world"”) hello world

* Strings (e.g. “hello world”) come with a set of built-in abilities or tools (which we call
attributes and methods).

* For example, strings “know how” to make themselves upper-case:

print(“hello world” .upper()) HELLO WORLD

Variables

* Variables are labels used to reference values stored in computer memory

€ J)

* Variable names can only use letters, numbers and the underscore *_

e Variable names can’t start with a number

 Python is case-sensitive (“X” is not the same as “x”)

invalid names:

mass 10 2mass = 10
m = 20 #mass = 20
first_name = “Sal” first name = “Sal”

g = 9.8

Use variables to perform calculations

 We define two variables to store the length and width of a rectangle

* We calculate and display the area to the screen

 Notice we also use comments (defined by #) to remind ourselves the measurement is in
meters. Python variables do not have units. You need to need track them yourself.

length = 10 # in meters

width = 20 # in meters

area = length * width # in meters”2

print(“area =", area, “m"2") area = 200 m”2

* Notice also, we can display a combination of variables and text in the print statement
by separating them with commas

Data Types

 Values (like numbers and text) have different data types.

Examples:

Integer 4
Float 4.2
Complex 4.2+2j
String “hello”

Boolean True

Data Types

* Different data types can behave differently under the same operation

Example: The * operator generates repeated copies of a string

s = “4" # string

print(10*s) 4444444444

but performs mathematical multiplication on integers and floats

s = 4 # integer

print(10*s) 40

Data type conversions

From:

Examples:

To:
Integer Float String
str(4)
Integer float(4) fr {x: l} '
int(4.0) str(4.0)
Float , ,
round(4) f' ' {x:.2f}
String int(“4”) float(“4.0”)
pi = 3.14153 y = int(pi) #y = 3 float = int
x = 4 y = float(s) #y = 50. string — float
g = ugQw z = str(x) # oz = “4" int = string
y = £f'{pi:.2f}" # y = “3.14" float = string

Formatted printing with f-strings

* Formatted printing lets you line things up in neat columns and control the number of significant
digits

* Formatting floats:

X = 316.227766 # define a float

tells Python this is variable
“f” tells Python to

an “f-string”
\ l / format as a float

print(f’'{x:8.2f}"') Output: 316.23
total spaces / \ # digits to right of
reserved for number decimal point

(optional)

Formatted printing with f-strings

* f-string options:

X = 316.227766
n = 2478

print(f’'{x:.2f}")
print(f’'{x:.4£f}")
print(f’'{x:8.2f}")
print(f’'{x:10.2f}")

print(f’'{x:.2e}')

print(f’'{n:6g}’)

print(f’'{n:6d}")

R H H H H*

H*

define a float
define a float

316.23
316.2278
316.23
316.23

3.16e+02

2478

2478

llfll

lldll

decimal representation

exponential (i1.e. scientific)
notation

chooses decimal or scientific
notation to make easy to read

integer representation

Errors

 Believe it or not, error messages are your friends! They help you find bugs in your code.

© print("hello)

4

File "/tmp/ipython-1input-2149988476.py", Lline 1
print("hello)

SyntaxError: unterminated string literal (detected at line 1)

O float("cat")

ValueError Traceback (most recent call last)
/tmp/ipython-input-658078711.py in <cell line: 0>()
————> 1 float("cat")

ValueError: could not convert string to float: 'cat'

© print("hello)

Errors

=~

v File "/tmp/ipython—-input-2149988476.py", line 1
print("hello)

SyntaxError: unterminated string literal (detected at line 1)

When you get an error, do one or more of the following:
 don’t panic
 don’t throw objects
 take a deep breath
* relax
* meditate
* give thanks to the error message for helping you make your code the best it can be
* use the line number to identify where the error is.

« sometimes copying the error into ChatGPT or another Al can help with troubleshooting

Python For Physicists

Chapters 3: Math Functions

Native Python has a few built-in Math functions

W
i
N Ol

[N XK X

S T T
|
|
OB, BN G BN,

abs (x)
round(x)
int(x)

y
/'y

N o©

X
X

N KKK

#
#

H* W H H

H* I H H

H* I H

assign a value to x
assign a value to y

adds x and y
subtracts y from x
multiplies X times y
divides X by vy

adds 5 to the current value of x
subtracts 5 to the current value of x
multiplies the current value of x by 5
divides the current value of x by 5

takes the absolute value of x
rounds X to nearest integer
truncates decimal leaving only whole number

remainder after division of x / y
integer division of x / y (truncates decimal)

Some function have default values for some arguments:

Rounds to the nearest integer

X = round(3.144159) X = 3

Rounds to the nearest N decimal places

2

Z

»3

round(3.144159,N) x - 3.14

T

optional argument

Define your frequently used physical constants

C = 299792458

h = 6.626e-34
hbar = 1.0546e-34

k = 1.3806e-23

G = 6.6743e-11

e = 1.602177e-19
me = 90.10938e-31
u = 1.66054e-27

epsilon0 = 8.854188e-12

H o OH O H H W H

RIS

definition of the speed of light in m/s
Planck's constant (J s)

"h bar" = h / (2*pi) (J s)

Boltzmann's constant (J/K)
Gravitational constant (m"3/kg/s”2)
fundamental charge (C)

mass of electron (kg)

atomic mass unit (kg)

vacuum permittivity (F/m)

NumPy Library

Libraries are collections of one or more modules (collections of functions and other objects) that provide
additional functionality to the basic Python package, much like a new instrument adds functionality to a
research lab.

One of the most widely-used libraries for scientific computation is NumPy (pronounced "num-pie" and
not something that rhymes with "grumpy").

* NumPy provides a wide range of numerical functions that are not included in native Python.

* For example, Python doesn't natively include the sine and cosine functions.

* Tousethislibrary, we add an import statement to the beginning of our program, and give it a nickname:

import numpy as np # 1mport the numpy library and give it nickname “np”

r = 10 # define the radius of a circle
A np.pi * r**2 # use the numpy library value for pi
print("area of circle = " ,A)

Commonly used NumPy math functions

x = 0.5 # define a value for x # degree-radian conversions

y = 3 # define a value for y np.deg2rad(x) # converts degrees to radians
np.rad2deg(x) # converts radians to degrees

constants

np.pi # pi # inverse trigonometric functions

np.e # e np.arcsin(x) # asin(x)

np.inf # infinity np.arccos(x) # acos(x)

np.nan # not a number np.arctan(x) # atan(x)

logarithmic and exponential functions # hyperbolic functions

np.sqgrt(x) # square root(x) np.sinh(x) # hyperbolic sin

np.exp(x) # e’"x np.cosh(x) # hyperbolic cos

np.log(x) # 1n(x) np.tanh(x) # hyperbolic tan

np.logl0(x) # log base 10(x)

np.log2(x) # log base 2(Xx)

trigonometric functions
np.sin(x) # sin(x)
np.cos(x) # cos(x)
np.tan(x) # tan(x)

