
Python for Physicists

Chapters 0, 1, 2. Variables and Data Types



Python For Physicists 

Chapters 0-2:  Introduction, Variables and Data Types



• Python is a widely used programming language that’s popular in science, data analysis, 
and everyday problem-solving because it’s designed to be readable and easy to learn.  

• In Python, you can use it like a calculator to do math, work with text, or organize data 
into lists and tables.  

• In Python, every piece of data comes with built-in tools for working with it (this is 
true for numbers, characters, etc), so you can quickly get things done without 
starting from scratch. For the experts:  everything in Python is an object with pre-
defined attributes and methods. 

• As you learn Python, you’ll see how a few simple building blocks can be combined to 
model real-world problems, run experiments, and solve practical tasks.

Intro to Python



• The following program displays a message to the screen. The output is shown to the right

Your First Program

print(“hello world”)

• Strings (e.g. “hello world”) come with a set of built-in abilities or tools (which we call 
attributes and methods).

hello world

print(“hello world”.upper()) HELLO WORLD

• For example, strings “know how” to make themselves upper-case:



• Variables are labels used to reference values stored in computer memory 

• Variable names can only use letters, numbers and the underscore “_” 

• Variable names can’t start with a number 

• Python is case-sensitive ( “X” is not the same as “x”)

Variables

mass = 10

m = 20

first_name = “Sal”

g = 9.8

Valid variable names: invalid names:

2mass = 10

#mass = 20

first name = “Sal”



• We define two variables to store the length and width of a rectangle 

• We calculate and display the area to the screen 

• Notice we also use comments (defined by #) to remind ourselves the measurement is in 
meters. Python variables do not have units. You need to need track them yourself.

Use variables to perform calculations

length = 10               # in meters
width = 20                # in meters
area = length * width     # in meters^2
print(“area =”, area, “m^2”) area = 200 m^2

• Notice also, we can display a combination of variables and text in the print statement 
by separating them with commas



• Values (like numbers and text) have different data types.

Data Types

Integer       4 

Float           4.2 

Complex     4.2+2j 

String         “hello” 

Boolean       True

Examples:



• Different data types can behave differently under the same operation

Data Types

s = “4”        # string
print(10*s) 4444444444

Example:  The * operator generates repeated copies of a string

s = 4          # integer
print(10*s) 40

but performs mathematical multiplication on integers and floats



Data type conversions

Integer Float String

Integer

Float

String

float(4)

int(4.0)
round(4)

f’{x:i}' 

f'{x:.2f}' 

str(4)

From:

To:

str(4.0)

float(“4.0”)int(“4”)

Examples: pi = 3.14153
x  = 4
s  = “50”

y = int(pi)     # y = 3
y = float(s)    # y = 50.
z = str(x)      # z = “4”
y = f’{pi:.2f}’ # y = “3.14”

  float → int 
string → float 
      int → string 
   float → string



Formatted printing with f-strings
• Formatted printing lets you line things up in neat columns and control the number of significant 

digits

• Formatting floats:

x = 316.227766  # define a float   

print(f’{x:8.2f}’)

tells Python this is 
an “f-string”

variable
“f” tells Python to 
format as a float

# total spaces 
reserved for number 

(optional)

# digits to right of 
decimal point

Output:   316.23



Formatted printing with f-strings

x = 316.227766         # define a float                                   
n = 2478               # define a float                                   

print(f’{x:.2f}')      # 316.23        “f” = decimal representation       
print(f’{x:.4f}')      # 316.2278                                         
print(f’{x:8.2f}’)     #   316.23                                       
print(f’{x:10.2f}’)    #     316.23                                       

print(f’{x:.2e}')      # 3.16e+02      “e” = exponential (i.e. scientific)
                       #                     notation                     

print(f’{n:6g}’)       #   2478        “g” = chooses decimal or scientific
                       #                     notation to make easy to read

print(f’{n:6d}')       #   2478        “d” = integer representation       

• f-string options:



Errors
• Believe it or not, error messages are your friends!  They help you find bugs in your code.



Errors

When you get an error, do one or more of the following: 
• don’t panic 
• don’t throw objects 
• take a deep breath 
• relax  
• meditate 
• give thanks to the error message for helping you make your code the best it can be 
• use the line number to identify where the error is.  
• sometimes copying the error into ChatGPT or another AI can help with troubleshooting



Python For Physicists 

Chapters 3:  Math Functions



Native Python has a few built-in Math functions
x = 5         # assign a value to x
y = 2         # assign a value to y

z1 = x + y    # adds x and y
z2 = x - y    # subtracts y from x
z3 = x * y    # multiplies x times y
z4 = x / y    # divides x by y

x += 5        # adds 5 to the current value of x
x -= 5        # subtracts 5 to the current value of x
x *= 5        # multiplies the current value of x by 5
x /= 5        # divides the current value of x by 5

abs(x)        # takes the absolute value of x
round(x)      # rounds x to nearest integer
int(x)        # truncates decimal leaving only whole number

x % y         # remainder after division of x / y
x // y        # integer division of x / y (truncates decimal)



Some function have default values for some arguments:

Rounds to the nearest integer

x = round(3.144159) x → 3

Rounds to the nearest N decimal places

N = 2
x = round(3.144159,N) x → 3.14

optional argument



Define your frequently used physical constants

c    = 299792458         # definition of the speed of light in m/s
h    = 6.626e-34         # Planck's constant (J s)
hbar = 1.0546e-34        # "h bar" = h / (2*pi)  (J s)
k    = 1.3806e-23        # Boltzmann's constant (J/K)
G    = 6.6743e-11        # Gravitational constant (m^3/kg/s^2)
e    = 1.602177e-19      # fundamental charge (C)
me   = 9.10938e-31       # mass of electron (kg)
u    = 1.66054e-27       # atomic mass unit (kg)

epsilon0 = 8.854188e-12  # vacuum permittivity (F/m)



NumPy Library
Libraries are collections of one or more modules (collections of functions and other objects) that provide 
additional functionality to the basic Python package, much like a new instrument adds functionality to a 
research lab. 

One of the most widely-used libraries for scientific computation is NumPy (pronounced "num-pie" and 
not something that rhymes with "grumpy").  
• NumPy provides a wide range of numerical functions that are not included in native Python.  
• For example, Python doesn't natively include the sine and cosine functions.  
• To use this library, we add an import statement to the beginning of our program, and give it a nickname: 

import numpy as np   # import the numpy library and give it nickname  “np”

r = 10               # define the radius of a circle
A = np.pi * r**2     # use the numpy library value for pi
print("area of circle = ",A)



Commonly used NumPy math functions
x = 0.5   # define a value for x
y = 3     # define a value for y

# constants
np.pi         # pi
np.e          # e
np.inf        # infinity
np.nan        # not a number

# logarithmic and exponential functions
np.sqrt(x)    # square root(x)
np.exp(x)     # e^x
np.log(x)     # ln(x)
np.log10(x)   # log base 10(x)
np.log2(x)    # log base 2(x)

# trigonometric functions
np.sin(x)     # sin(x)
np.cos(x)     # cos(x)
np.tan(x)     # tan(x)

# degree-radian conversions
np.deg2rad(x)     # converts degrees to radians
np.rad2deg(x)     # converts radians to degrees

# inverse trigonometric functions
np.arcsin(x)  # asin(x)
np.arccos(x)  # acos(x)
np.arctan(x)  # atan(x)

# hyperbolic functions
np.sinh(x)    # hyperbolic sin
np.cosh(x)    # hyperbolic cos
np.tanh(x)    # hyperbolic tan


